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Abstract

Flash droughts are rapid, short-term drought events that develop within weeks, driven by factors
such as low rainfall, high temperatures, and strong winds, which deplete soil moisture and stress
vegetation. These events have profound agricultural, economic, and ecological impacts, yet the use
of machine learning to predict flash droughts remains underexplored, hindered by challenges like
imbalanced datasets and limited data. This study addresses these issues by applying Convolutional

neural networks (CNNs) to predict flash droughts in Eastern Australia, a region prone to such
events. We identified flash droughts from 2001 to 2022, training the model with data from
2001-2015, validating it on 2016—2017 data, and testing it on 2018-2022 data. The model’s
performance was evaluated across drought duration, spatial distribution, and seasonal variability.
Achieving a balanced accuracy of 80% and an Area under the curve of 93%, the CNN
demonstrated strong predictive capability. However, it tended to overestimate the spatial extent of
droughts, indicating areas for future improvement. These results highlight the potential of deep
learning in flash drought prediction, offering valuable insights for early warning systems and

drought management strategies.

1. Introduction

Flash droughts are rapid bursts of extremely dry con-
ditions in a short duration of time, affecting agricul-
ture and natural ecosystems [1]. The concept of flash
droughts was given by [2], which observed periods
of unusually rapid intensification of drought com-
pared to drought periods which develop slowly and
gradually. Flash droughts are driven by a combination
of climatic factors, including rainfall deficiency, high
temperatures, and strong winds, which accelerate soil
moisture depletion and increases stress on vegetation,
resulting in substantial agricultural, economic, and
ecological impacts.

© 2025 The Author(s). Published by IOP Publishing Ltd

Researchers have attempted to understand flash
drought using sub-surface soil moisture anomalies
capturing its onset and evolution [3, 4]. Typically,
definitions have some condition that the metric
should indicate a state of drought following a period
of rapid change, for example, falling to below the
20th percentile after two, four, or eight weeks [2]. For
example, Otkin et al [5] developed the rapid change
index to detect flash droughts using 16 different
evapotranspiration stress index (ESI)-based change
anomalies concurrently to examine the changes,
which can be challenging. Other indicators include
Evaporative Demand Drought Index, soil moisture
percentiles, combining rainfall, temperature, and soil
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moisture anomalies, with ESI being most often used.
Although these studies have advanced our under-
standing of flash droughts, it remains a poorly under-
stood ecohydrological problem. Several researchers
continue to explore flash droughts using various cli-
matological and/or vegetation indicators [1, 6, 7].

Most flash drought studies have focused on the
use of statistical approaches to identify and analyze
flash droughts, and the use of machine learning (ML)
is very limited [8]. Tyagi et al [7] provided a com-
prehensive review on the use of ML approaches for
different aspects of flash drought, including identific-
ation and prediction, and the associated challenges.
Zhang et al [9] studied the relationship between the
rate of intensification and nine related climate vari-
ables using three different ML models, which were
random forests, long-short term memory model and
multiple linear regression model. Their study found
random forests model to be the best model to identify
the relationship between the rate of intensification
and flash drought identification which were identi-
fied using soil moisture values. Barbosa et al [10] used
a Convolutional neural network (CNN) model to
develop a probabilistic drought detection map across
northeastern Brazil for 2012. Speer etal [11] used ran-
dom forest and support vector regression model to
examine the relationship between rainfall variability
and flash drought occurrences from May to October
2023 in the Upper Hunter region of New South Wales
(NSW) to identify the most important climate drivers
(attributes) that can be employed as predictors of
rapid changes in rainfall associated with the flash
drought.

Although these studies have used ML models
to examine the relationship between flash drought
and associated predictors (variables), none have
focused on predicting flash droughts. Predicting flash
droughts using any approach (statistical, physical or
ML) is challenging, due to two specific problems, (1)
lack of a universal definition, including the choice of
an index, (2) limited training datasets, given it is an
extreme event that is short in duration. This work
presents an approach on tackling this challenge by
using a deep learning model, CNN to predict a Flash
drought index (FDI) developed using ESI [12, 13].

2. Study area and data source

Flash drought occurrences have increased globally
over the past two decades [14, 15], and Australia
is no exception. In fact, it is one of the hotspots
experiencing a rising trend [16]. Given this increase,
this study focuses on Eastern Australia, one of the
most ‘climatically sensitive’ regions of the world.
Nguyen et al [12, 13] extensively studied the 2018
and 2019 flash drought events in Australia. The
2018 flash drought event in the northern part of
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the Murray Darling basin (MDB) (figure 1) loc-
ated in Queensland (QLD) was marked by rapid
change towards strongly negative ESI with posit-
ive rainfall and vapor pressure anomalies. The 2019
flash drought event in Central slopes (covering parts
of southern QLD and northern NSW) was found
to have occurred from June 2019 to January 2020.
Similarly, east coast regions were found to be under
flash drought in November and December 2019. This
event was linked to large-scale climatic drivers and
suggested that the prediction of flash drought would
require both local details along with large-scale cli-
matic drivers. However, it is important to under-
stand that this period was the Black Summer Event
(largest bushfire in Australia’s history) [17] and con-
firming if flash drought happened during this period
is debatable.

In this study, flash drought identification was cal-
culated using the FDI, which is based on anomalies in
the ESI. The ESI itself is an anomaly of the ratio of
evapotranspiration to Potential evapotranspiration.
Using FDI, the percentage of days each pixel exper-
ienced flash drought from 2001 to 2022 is presen-
ted in figure 1. This metric represents the cumulative
days under flash drought conditions, not a continu-
ous count. As shown in figure, eastern NSW, parts
of Northern Territory (NT) and south-eastern QLD
have suffered the most, with 5%—7% of time under
flash drought conditions.

The FDI is predicted using a deep learning model,
specifically CNN, to forecast flash drought one day in
advance, utilizing a range of climatic variables. The
study employs six climatic variables: rainfall, air tem-
perature, runoff, soil moisture, wind speed, and vapor
pressure, to predict flash droughts. All datasets used
for flash drought prediction and FDI calculation were
obtained from AWRA-L v6, provided by the Bureau
of Meteorology, Australia. AWRA-L offers daily data
at a spatial resolution of 0.05°. AWRA-L uses the
daily Australian gridded climate data (AGCD) cli-
mate data set that consists of observed air temperat-
ure (daily minimum and maximum) and daily rain-
fall data [12]. Further details about the FDI calcula-
tion and the process involved are discussed in the sup-
plementary section. Figure 2 is the flowchart for cal-
culating FDL.

3. Method

3.1. CNN architecture

CNNs provide a natural fit for this task because
of their ability to learn hierarchical and spatial
features from large-scale climate datasets automat-
ically, without requiring extensive manual feature
engineering. While simpler models may offer bet-
ter interpretability and faster training, they often
fall short in capturing the spatial correlations and
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Figure 1. Map of drought frequency (%) in eastern Australia from 2001 to 2022. The states shown are NT—Northern Territory,
QLD—Queensland, NSW—New South Wales, TAS—Tasmania, VIC—Victoria and SA—Southern Australia. The blue line shows

non-linear interactions that are essential for accur-
ate flash drought prediction. Simpler models, such
as logistic regression or support vector machines, are
not well-equipped to handle the multidimensional
nature of climate data [18]. CNNs, on the other
hand, excel in such contexts by exploiting the grid-like
structure of data and learning spatial filters through
backpropagation [19]. Their hierarchical structure
enables CNNs to capture local patterns in the early
layers and more abstract, high-level patterns in the
deeper layers [20, 21], which are particularly useful
for understanding and predicting complex environ-
mental phenomena like flash droughts.

The present model utilizes 84 historical days of
input climatic data (rainfall, air temperature, run-
off, soil moisture, wind speed and vapor pressure)
along with positional and seasonal information to

enhance performance. The architecture consists of 7
convolutional layers with a progressively decreasing
number of filters (ranging from 512 to 8), each fol-
lowed by batch normalization and 10% dropout for
regularization. ReLU activation functions are applied
to intermediate layers, while the final layer employs a
Sigmoid activation function for binary classification.
The model was trained for 100 epochs, and the best
model parameters were selected based on a hold-out
validation set. The model with the highest validation
F1-score was chosen. This approach serves as a form
of regularization to prevent overfitting. The entire
training process took approximately 35 h on a single
Nvidia V100 GPU. The depth of the network allows
the model to capture both fine-grained and high-level
spatial dependencies that are critical for flash drought
forecasting.
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Figure 2. Flowchart to calculate flash drought.

A major challenge in flash drought prediction
is the severe class imbalance inherent in the data-
set. Flash drought events (positive class) are much
rarer than non-drought events (negative class), which
can lead to biased models that predict only the
majority class (non-drought). To effectively handle
this imbalance, we employed a weighted binary

cross-entropy loss function, where greater weight
is assigned to the minority class (flash drought
events). This approach ensures that the model does
not become biased toward predicting non-drought
events and learns to detect the rarer, yet critical,
flash droughts. The mathematical equation of the loss
function is:
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Figure 3. Architecture of the CNN model used.

N
. 1 ~
Weighted BCE Loss = N ;:1 [w-yi-log(7)
+(1=w) . (1=y) log(1 -]
(1)

y; —Predicted probability for the positive class for
the ith sample. y; € [0, 1]

y; —Ground truth label y; € {0, 1}

w —Weight assigned to the positive class w €
0, 1

e N —Total number of samples

Overall, the CNN architecture, combined with the
use of a weighted loss function, allows the model to
effectively address both the complex spatial depend-
encies of flash drought events and the severe data
imbalance. This approach provides a robust and scal-
able framework for flash drought prediction, offer-
ing significant advantages over simpler models that
lack the capacity to handle the intricacies of climate
data and the challenges posed by class imbalance.
CNN’s ability to learn spatial features and focus on
rare, high-impact events makes it a powerful tool in
advancing our understanding and forecasting of flash
droughts. More details about the convolutional pro-
cess and architecture (figure 3) have been added in the
supplementary section.

4, Results

The entire dataset (2001-2022) was divided into three
parts. Firstly, we trained the CNN model with flash
drought data from 2001-2015. The validation set of
January 2016 to December 2017 was used to pick the
best model among all the epochs, and the rest of the
data was used for testing. The quantitative evaluations
of the model during these periods are presented in
table 1. The definitions of the statistical metrics, and
in-depth analysis of the quantitative metrics is presen-
ted in the supplementary information.

To gain a deeper understanding of the model’s
outcomes, we conducted comparisons between two

different scenarios. First, we examined the spatial dif-
ferences between the observed and predicted flash
drought regions on the day with the highest num-
ber of observed flash drought pixels during the test-
ing period. Second, we analyzed these differences on
the day when the number of predicted flash drought
pixels was at its peak. Figure 4 shows the differences
between observed and predicted flash drought pixels
which occurred on 26 January 2018. On this day,
27.9% of observed pixels showed flash drought with
the majority of them occurring in the state of QLD.
The predicted map follows the same pattern as
observed, yet it seems to predict more pixels (7.1%)
compared to observed. The difference between the
predicted and observed flash drought pixels, shows
that the predicted map predicts more pixels around
the regions of observed flash drought leading to
some false positives. However, for a regional mon-
itoring system false positives around the buffer area
may not be a bad proposition. The blue regions in
the difference map highlight areas where the model
failed to predict flash droughts that were observed,
indicating false negatives. This suggests the model
may not be fully capturing the conditions or trig-
gers that led to these observed events. Such gaps
could arise from limitations in the training data, miss-
ing or underweighted environmental variables, or
biases in the model’s sensitivity to localized climatic
patterns.

During the testing period, the summer months of
2018 had the most number of flash drought pixels.
Figure 5 shows the number of days pixels experi-
enced flash drought conditions during the summer
period of 2018 (December 2018—]January 2019). The
color bar represents the duration of flash drought
during this time frame. The observed map shows that
the flash drought event was largely concentrated in
southern QLD, NT with sporadic events in NSW and
Tasmania. The model outputs were able to capture the
location and duration of these events, and the pre-
dicted map shows a longer duration in almost all of
the flash drought regions.
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Table 1. Statistical metrics of the model during various periods.

Time period Recall Precision F1-score Balanced accuracy ROC-AUC
Training 79.93 33.28 47 88.28 97.65
validation 63.63 29.18 40.01 80.26 95.67
Testing 64.85 29.24 40.31 80.12 93.84
26 Jan 2018
(@) Observed (b) Predicted (c) Difference
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Figure 4. Comparison of predicted and observed flash drought pixels on the day which had the most number of flash drought

5. Variations in summer season

To examine the differences in observed and predicted
flash drought pixels, the 2018—19 Australian summers
(December—January—February) were divided into
periods of 15 d (figure 6(a)). This comparative visu-
alization helps in understanding both the spatial and
temporal patterns of flash droughts as well as the
effectiveness of the prediction model across different
regions and time periods. The observed flash drought
pixels do not show a progression of such events, rather
it occurs in some regions, ends quickly and then ree-
merges again. For example, the first half of December
shows that flash drought began in some parts of
south-west Victoria, which ends for one month and
then reemerges in February.

Initially, from 1 December to 15 December,
drought events were relatively sparse, primarily con-
centrated in southern QLD and northern NSW. As the
season moves into late December (16-30 December),
the observed data indicate a moderate expansion of
drought regions, especially in QLD and parts of NT.
By January, the observed flash drought areas expand
significantly. The most affected regions include QLD,

NT, South Australia and Tasmania. In the final phase
of the summer season, from late January to February,
observed flash droughts remain prominent but begin
to show some variability in spatial distribution. The
drought conditions persist in central and southeast-
ern Australia, with slightly reduced severity compared
to the peak in January. Notably, the coastal areas seem
to experience more localized and patchy droughts
during this time, indicating the influence of short-
term weather patterns that provide intermittent relief
from prolonged dryness.

The observed flash droughts show a gradual
intensification, with notable peaks around the early
January to early February period. This trend indic-
ates that flash droughts were more severe and wide-
spread during the summer peak, which aligns with
the Tinderbox drought period, which was one of
the worst drought periods in the country [22]. This
period was the driest 3 year period since 1911 and can
be visualized from the rainfall and mean temperature
anomalies (figure 6(b)). The rainfall and mean tem-
perature anomalies are standardized anomalies using
the AGCD data [23] from 2001-2022, and each sub-
plot is the mean of these values during the specified
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period. The temperature anomalies were negative in
late December in coastal QLD and till end February
there is a sharp decrease towards negative anomalies
in the majority of QLD and Southern Australia.

Spatially, the predicted and observed flash
drought patterns share some similarities but also
exhibit some differences. In general, the CNN model
shows a reasonable level of accuracy in predicting
the occurrence and timing of flash droughts. The
predicted flash drought seems to over-predict the
extent of flash droughts, as visible from 30 Jan—13
February 2019. During this period, large regions of
Victoria and Southern Australia were predicted to
be under flash drought, whereas the observed flash
drought was limited to coastal regions of Victoria
and Southern Australia. Similar observation can be
made for the 2021-22 summer season, as shown in
the supplementary information.

6. Variations in winter season

Like the above discussion on summer season, ana-
lysis was conducted for winter season (June- July—
August) of 2018 (figures 7(a) and (b)). The observed
maps clearly show that flash drought began in QLD
which progressed to NSW by the end of winter 2018.

During the early part of winter, from 1 June to
15 July, the observed flash drought data indicates
relatively isolated and scattered drought conditions,
primarily in QLD and Northern NSW. These drought

events appear as small patches, suggesting that the
occurrence of flash droughts in this region during
early winter is sporadic and does not progress over a
large area. In the later stages of winter, from the end
of July through August, there is a significant change
in the observed flash drought patterns. During this
period, the drought regions expand notably in NSW
and extend towards some parts of Victoria and NSW.
The extent of flash droughts in these areas suggests an
increase in flash drought area as winter approaches its
end. The most prominent drought activity is observed
in the period from 15 August to 29 August, where
large parts of NSW are severely affected. Similar
observation can be made for the 2022 winter season,
as shown in the supplementary information. This
widespread drought pattern indicates that as winter
transitions into the pre-spring period, the soil mois-
ture deficit becomes more pronounced, affecting a
larger area. This is consistent with the mean temperat-
ure anomalies which were negative during the second
half of August 2018. Similarly, rainfall anomalies were
slightly negative throughout this period.

7. Discussions

This work is focused on how to develop a data-driven
model to predict an event which is short in duration
and does not have enough samples. This does not
endorse the use of ESI as the most appropriate index
for flash drought identification [24]. The focus of the

7
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work is to study whether a flash drought index be pre-
dicted using only climatic variables given the number
of imbalanced training datasets. The predicted index
is a binary number of either flash drought occurring
or not occurring and does not reflect the intensity of
the flash drought.

For this, a CNN architecture with a focus on a dif-
ferent loss function was used. The study focused on
understanding whether the model can correctly pre-
dict a flash drought pixel and how well can it pre-
dict the duration of a flash drought event. In terms of
correctly predicting a flash drought pixel, the results
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Figure 7. (a) Comparison of observed, predicted and the difference in flash drought periods across the 2018 winter season divided
across 15 d. (b) Rainfall and mean temperature standardized anomalies across the 2018—19 winter season divided across 15 d.
Daily standardized anomalies were computed by excluding the target year to calculate the mean and standard deviation and then
standardized as (value—mean)/standard deviation.

suggest that the model was able to correctly identify
94% of the flash drought pixels. To further analyze
the capability of the model, a comprehensive ana-
lysis between predicted and observed flash drought
pixels were conducted across two seasons (summer

and winter) for 2018. Given that the testing period
extended from January 2018 to December 2022,
and that 2019/20 was marked by extreme bushfires,
2018 was the only period without significant external
factors influencing the results. Any occurrences of
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flash drought following the fire period need to be
examined in conjunction with the burned area and
fire dynamics.

Research on the use of ML models to exam-
ine flash droughts has primarily focused on identi-
fying their onset, termination and forecasting flash
drought-based indices. The present work is unique
in that it predicts whether a given pixel will exper-
ience a flash drought based on climatic factors.
Previous examples of ML applications in this domain
include the studies conducted by Xu et al [25] which
used a light gradient boosting machine model to
predict global root-zone soil moisture (RZSM) for
flash drought detection, using meteorological fore-
casts from the ECMWF sub-seasonal to seasonal
model. The model combines static features (e.g. land
cover, vegetation type, soil type) and dynamic fea-
tures (e.g. temperature, dewpoint, wind, precipita-
tion, radiation) to predict RZSM over 1-14 d time
scales. The results show that the ML model can cor-
rectly predict 33% of flash drought onsets and 24% of
terminations at a 7 day lead time, outperforming the
state-of-the-art dynamic model, which predicts only
19% and 11%, respectively.

Lorenz et al [26] applied a Gradient boosting
machine model to forecast soil moisture and ESL
The model utilized predictors such as soil mois-
ture variables at different depths, precipitation, and
dewpoint depression. This study improved upon
earlier linear regression approaches by increasing the
sample size through the inclusion of surrounding grid
points, which enhanced model robustness. Notable
improvements were observed in regions with high
soil moisture autocorrelation, such as the Midwest
and Southeast United States, where the ML model
reduced prediction errors and increased forecasting
skill. However, predictions for ESI showed limited
improvements compared to soil moisture, likely due
to the complex interactions between vegetation and
atmospheric conditions, as well as the challenges
posed by limited data availability. This is the first
study of its kind aimed at predicting the flash drought
index based on historical flash drought events and
climatic factors, with a particular focus on address-
ing imbalanced datasets. Xu et al [25] correctly pre-
dicted 84% of flash drought onsets, but their method
determines the onset based on a range of days rather
than a specific day. In contrast, our approach iden-
tifies the onset on a specific day. Hence, for compar-
ison purposes, we considered only those flash drought
events with a minimum duration of 14 d and defined
the flash drought onset range as 2 weeks (+7 d).
Under these conditions, our model correctly pre-
dicted 85.28% of flash drought onsets, slightly out-
performing the findings of Xu et al [25].
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8. Conclusions

Flash droughts represent a complex and rapidly devel-
oping type of extreme dry event that has posed sig-
nificant challenges for researchers in terms of defini-
tion, analysis, and prediction. The sudden onset and
intense nature of flash droughts, coupled with their
relatively short duration, set them apart from tradi-
tional droughts, making it difficult to capture their
characteristics using conventional drought indices.
One of the key challenges in studying flash droughts
is the inherent scarcity of such events in histor-
ical datasets, which leads to a significant imbalance
in data when compared to non-drought conditions.
This imbalance complicates the development of pre-
dictive models, as standard ML approaches often
struggle to identify patterns in underrepresented
classes.

To address these issues, our study implemented
a deep learning approach using CNN with a par-
ticular emphasis on handling the imbalanced nature
of flash drought datasets. While CNNs are tradi-
tionally well-suited for identifying spatial patterns,
they are not inherently designed to capture tem-
poral changes. However, in this model, the input
data has been structured in a way that allows the
CNN to effectively recognize temporal patterns. The
comparison between observed and predicted flash
drought events was thoroughly analyzed across both
summer and winter seasons, focusing on the dura-
tion and spatial distribution of flash droughts. The
model demonstrated a robust performance, achiev-
ing an accuracy of 80% in accurately predicting flash
drought pixels. The outcomes of this study under-
score the potential of CNNs as a powerful tool
in advancing our knowledge of flash drought pat-
terns and improving our ability to forecast these
sudden and extreme events. Continued research
in this area, focusing on enhancing model preci-
sion and integrating observational data and large-
scale climatic indicators, will be crucial for devel-
oping robust predictive models capable of support-
ing effective drought preparedness and response
strategies.

Data availability statement
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